Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего образования

«Национальный исследовательский Томский государственный университет»

	ГВЕРЖ ооректо	ДАЮ р по учебной работе
до	цент	В.В. Дёмин
	»	2015

ПРОГРАММА ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Эволюция и популяционная генетика растений

22 часа Направление: 06.03.01 Биология

СОГЛАСОВАНО:	
Директор БИ	Д.С. Воробьев
Директор ИДО	Г.В. Можаева

		бной работе, В.В. Дё	мин
«	»	2015	

учебный план

программы повышения квалификации «Эволюция и популяционная генетика растений»

		Общая		Аудиторные занятия, ч				Формы
№ п/п	Наименование модулей (курсов)	трудо- емкость, ч	Всего ауд. ч	лекции	лаборатор ные работы	практические и семинарские занятия	СРС, ч	контроля
I	Эволюция и популяционная генетика растений	12	12	12				Зачет
II	Практическая часть	10	10			10		Зачет
	Итого	22	22	12		10		
Итоговая аттестация		Зачет						

Директор БИ Д.С. Воробьев

Директор ИДО Г.В. Можаева

УТВЕРЖДАЮ
Проректор по учебной работе,
доцент В.В. Дёмин
« » 20

УЧЕБНО-ТЕМАТИЧЕСКИЙ ПЛАН

программы повышения квалификации

«Эволюция и популяционная генетика растений»

					диторные занятия, ч			Формы
		трудо-	Всего	лекции	лаборатор	практические	СРС, ч	контроля
<u>№</u>	Наименование модулей (курсов)	емкость,	ауд. ч		ные работы	и семинарские занятия		
$\mathbf{I}^{\Pi/\Pi}$	Модуль 1. Эволюция и популяционная генетика растений	12	12	12	pacera	SWIIIII		Зачет
_	(теоретическая часть)	12	12	12				34 161
1.1	Тема 1. Введение в техники секвенирования нового поколения (NGS)	2	2	2				
1.2	Тема 2. Концепции филогенетики	2	2	2				
1.3	Тема 3. Филогенетические методы	2	2	2				
1.4	Тема 4. Концепции популяционной генетики и филогеографии	2	2	2				
1.5	Тема 5. Методы популяционной генетики и филогеографии	2	2	2				
1.6	Тема 6. Филогенетическое датирование и биогеографический анализ		2	2				
II	Модуль 2. Практическая часть		10			10		Зачет
2.1	Тема 1. Сборка генома. Фильтрация прочтений хлоропласта. Исправление	4	4			4		
	погрешностей. Отбор одиночных (SE) и парных (PE) прочтений. Картирование							
	парных прочтений. Сборка контигов и скаффолдинг. Заполнение гэпов.							
	Проверка сборки. Картирование прочтений на референсный геном.							
	Картирование нового генома на прочтения.							
2.2	Тема 2. Анализ модели нуклеотидных замен с помощью jModelTest.	2	2			2		
	Филогенетическая реконструкция используя Paup*, MrBayes и RAxML							
2.3	Тема 3. Популяционно-генетический анализ с помощью GenPop, AFLPdat,	2	2			2		
	AFLPsurv, Arlequin, NTSYS, Structure, TCS							
2.4	Тема 4. Анализ филогенетического датирования с помощью BEAST	2	2			2		
	(Байесовский метод). Молекулярно-биогеографический анализ с помощью							
	Lagrange (метод DEC)							
	Итого	22	22	12		10		

Директор БИ Д.С. Воробьев

Директор ИДО Г.В. Можаева

Эволюция и популяционная генетика растений

ОБЩАЯ ХАРАКТЕРИСТИКА ПРОГРАММЫ

Образовательная программа предназначена для преподавателей и научных сотрудников, в том числе молодых ученых высших учебных заведений и академических институтов, занимающихся вопросами систематики, филогении и биогеографии. Полученные новейшие знания и умения в области геносистематики будут в дальнейшем использоваться в учебном процессе и научных исследованиях.

Цель реализации программы: формирование у слушателей компетенций в области геносистематики, филогении и филогеографии.

Задачи:

- 1. Проанализировать опыт применения молекулярно-генетических методов для выявления генетического разнообразия естественных популяций растений, внутривидовых и межвидовых филогенетических отношений, наиболее вероятных путей плейстоценовых миграции.
- 2. Получить представление о корректном использовании и интерпретации данных, полученных в ходе молекулярно-генетического анализа для филогенетических и филогеографических реконструкций.

Планируемые результаты обучения:

Образовательная программа повышения квалификации «Эволюция и популяционная генетика растений» обеспечит слушателей следующими базовыми и специальными компетенциями:

- способность понимать современные проблемы биологии и использовать фундаментальные биологические представления в сфере профессиональной деятельности для постановки и решения новых задач;
- самостоятельно анализировать имеющуюся информацию, выявлять фундаментальные проблемы, ставить задачу и выполнять полевые, лабораторные биологические исследования при решении конкретных задач по специализации с использованием современной аппаратуры и вычислительных средств, демонстрировать ответственность за качество работ и научную достоверность результатов;
- применять методические основы проектирования и выполнения полевых и лабораторных биологических и экологических исследований с использованием современной аппаратуры и вычислительных комплексов, генерировать новые идеи и методические решения.

Категория слушателей: преподаватели и научные сотрудники, в том числе молодые ученые высших учебных заведений и академических институтов, занимающиеся вопросами систематики, филогении и биогеографии.

Входные требования к обучающимся: Обучающиеся должны обладать базовыми знаниями по ботанике, биохимии, общей генетике и исторической географии растений.

Трудоемкость обучения: Нормативная трудоемкость обучения по данной программе составляет 22 академических часа.

Форма обучения: очно-заочная (с частичным отрывом от работы).

Календарный учебный график формируется непосредственно при реализации программы повышения квалификации «Эволюция и популяционная генетика растений». Календарный учебный график представлен в форме расписания занятий при наборе группы на обучение

Особенности построения программы повышения квалификации «Эволюция и популяционная генетика растений»:

Программа повышения квалификации «Эволюция и популяционная генетика растений», состоящая из двух частей — теоретической (лекционный курс) и практической, позволяет овладеть необходимыми первичными навыками в области молекулярногенетических исследований. Реализация программы сопровождается использованием информационных и коммуникационных технологий, в том числе современных систем технологической поддержки процесса обучения, обеспечивающих комфортные условия для обучающихся и преподавателей, а также использование современного лабораторного оборудования. В основу проектирования программы положен компетентностный подход. Контроль за эффективным освоением образовательной программы будет осуществляться по результатам дискуссии по основным темам лекций и практических занятий.

ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ (формы аттестации, оценочные и методические материалы)

Итоговая аттестация слушателей программы проводится по результатам тестирования.

КАДРОВЫЕ УСЛОВИЯ (составители программы)

Пилар Каталан, доктор наук, профессор кафедры ботаники Института биологии, экологии, почвоведения, сельского и лесного хозяйства Национального исследовательского Томского государственного университета.

УЧЕБНАЯ ПРОГРАММА

модуля (курса)

«Эволюция и популяционная генетика растений (теоретическая часть)»

І. АННОТАЦИЯ

В рамках данного модуля, дается анализ современных методов молекулярногенетического исследования генетического разнообразия растений на видовом и популяционном уровне, и прививаются практические навыки их использования. Рассматриваются вопросы корректного применения этих методов для выявления происхождения филогенетических и филогеографических построений.

Автор программы:

Пилар Каталан, доктор наук, профессор кафедры ботаники Биологического института ТГУ.

Цель курса — изучить мировой опыт использования молекулярно-генетических методов и подходов для целей систематики, эволюции и биогеографии.

Курс может рассматриваться как самостоятельная учебная дисциплина и, вместе с тем, как один из модулей программы повышения квалификации «Современные методы и подходы в молекулярно-генетических исследованиях систематики растений».

ІІ. СОДЕРЖАНИЕ

Тема 1. Введение в техники секвенирования нового поколения (NGS) (2 ч.).

NGS-технологии (подготовка библиотеки, амплификация и секвенирование). Концепции NGS. Планирование эксперимента (секвенирование de novo, ресеквенирование, GBS/RAD, транскриптомика (RNSseq). Обработка данных. Формат Illumina Fastq и Контроль качества (QC). Проблемы и артефакты. Порядок проведения анализа GBS/RAD.

Тема 2. Концепции филогенетики (2 ч.).

Древо жизни (молекулярная филогенетика). Кладистика. Признаки, используемые в филогенетической реконструкции. Интерпретация филогений. Проблемы филогенетической реконструкции (образование сетчатой структуры, радиация, дупликация гена, разделение генетических линий, горизонтальный перенос генов). Топологические неопределенности. Набор данных и филогенетические гипотезы. Применение филогенетического анализа.

Тема 3. Филогенетические методы (2 ч.).

Методы, основанные на признаках (Принцип наибольшей экономии, Метод наибольшего подобия, Байесовский вывод). Методы, основанные на генетических расстояниях (Ультраметрическиие/аддитивные растояния, модели постановки нуклеотидов, алгоритм для построения деревьев). Методы принципа наибольшего подобия (вероятность нахождения оптимального дерева, оценка подобия дерева). Оценка деревьев (ресемплинг, непараметрический бутстреппинг). Принципы Байесовского вывода (Байесовские методы в филогенетике: моделирование используя Методы Монте Карло с цепями Маркова(МСМС); алгоритм Метрополиса). Наиболее распространенные программы в филогенетике.

Тема 4. Концепции популяционной генетики и филогеографии (2 ч.).

Анализ на микроэволюционном уровне. Молекулярные маркеры, используемые в популяционной генетике. Менделевы популяции в сравнении с метапопуляциями. Принцип равновесия Харди-Вайнберга. Неравновесное сцепление. Эволюция популяций (генетический дрифт, неслучайная мутация, популяционная структура, миграция, мутация, естественный

отбор). F-статистика Райта (коэффициент инбридинга, коэффициент фиксации). Поток генов. Теория коалесценции. Эффект Валунда.

Тема 5. Методы популяционной генетики и филогеографии (2 ч.).

Оценка параметров генетического разнообразия популяциях (кодоминантные/доминантные маркеры: количество аллелей, процент полиморфных редкие/специфические маркеры, аллельное многообразие, индекс DW. гетерозиготности, индексы генетического разнообразия). Оценка генетических структур популяций (индексы Gst и Fst, анализ молекулярной дисперсии (AMOVA), Байесовский анализ (Структурный)). Измерение коэффициента инбридинга в популяциях (Fst). Оценка генетических отношений между индивидами и популяциями (генетические расстояния, фенограммы UPGMA/NJ (метод попарного внутригруппового невзвешенного среднего и метод ближайшего связывания), графики PCO+MST, статистическая медианная сеть галотипов). Оценка потока генов и изоляция по расстоянию между популяциями. Корреляция между генетическими и географическими расстояниями популяций. Определение RGUC.

Тема 6. Филогенетическое датирование и биогеографический анализ (2 ч.).

Подобие и анализ датирования Байесовских часов. Строгие и нестрогие молекулярные часы. Калибровка возраста предковых узлов (калибровка на основе ископаемых и на основе вторичных данных). Оценка времени узловых дивергенций. Молекулярная биогеография. Реконструкция предковых областей. Медианные викариантно-дисперсные методы. Методы максимального родства дисперсии-вымирания-кладогенеза (DEC)/ Палеогеографические конфигурации, функциональные области, скорости дисперсии, стратифицированный анализ (временные срезы). Интерпретация биогеографических событий.

ІІІ. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ МОДУЛЯ

(организационно-педагогические)

1.1. Материально-технические условия реализации программы:

Для проведения занятий по программе повышения квалификации «Эволюция и популяционная генетика растений» используются лекционная аудитория, оснащённая доступом к сети Интернет, презентационным оборудованием, а также компьютерный класс, рассчитанный на 26 рабочих мест, оснащенный компьютерами, доступом к сети Интернет, презентационным оборудованием (проектор, интерактивная доска, экран, ноутбук, документ-камера, интерактивный планшет, маркерная доска).

1.2. Учебно-методическое и информационное обеспечение программы:

Методические рекомендации и пособия по изучению курса.

При изучении данного модуля рекомендуется использовать интерактивное оборудование для демонстрации иллюстративных видеорядов и основного текста тезисов, а также программы обработки данных для проведения практических работ.

Содержание комплекта учебно-методических материалов.

В процессе обучения слушателям предоставляются кейсы с раздаточными материалами об основных положениях данного модуля. Для лучшего усвоения материала процесс обучения сопровождается наглядными таблицами, схемами, примерами из практики.

Литература

- 1. Abdo, Z., Minin, V.N., Joyce P., Sullivan, J. 2005. Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation. Molecular Biology and Evolution 22:691–703.
- 2. Leblois, R., Estoup, A. & Rousset, F. 2003. Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance. Mol. Biol. Evol. 20: 491–502.

- 3. Rousset, F. 2007. Inferences from spatial population genetics. In: Handbook of statistical genetics (D. J. Balding, M. Bishop & C. Cannings, eds.), pp. 945–979. Wiley, Chichester, U.K., 3rd edn.
 - 4. Weir, B. S. 1996. Genetic Data Analysis II. Sinauer, Sunderland, Mass.
 - 5. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY.
- 6. Boyce, M.S. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23:481–506.
- 7. Ellstrand, N.C., Elam, D.R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24:217–242.
- 8. Falk, D.A., Holsinger, K.E. 1991. Genetics and conservation of rare plants. Oxford University Press, Oxford.
- 9. Pimentel, M., Sahuquillo, E., Torrecilla, Z., Popp, M., Catalán, P., Brochmann C. 2013. Hybridizations and long-distance colonizations at different time scales: towards resolution of long-term controversies in the sweet vernal grasses (Anthoxanthum). Annals of Botany 112: 1015–1030.
- 10. Minaya, M, Pimentel, M, Mason-Gamer, R, Catalán, P. 2013. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses. Molecular Phylogenetics and Evolution 68: 106–118.
- 11. Torrecilla, P., Acedo, C., Marques, I., Diaz-Pérez AJ, López-Rodríguez, J.A., Mirones, V., Sus, A., Llamas, F., Alonso, A., Pérez-Collazos, E., Viruel, J., Sahuquillo, E., Sancho, M.C., Komac, B., Manso, J.A., Segarra-Moragues, J.G., Draper, D., Villar, L., Catalán, P. 2013. Morphometric and molecular variation in concert: taxonomy and genetics of the reticulate Pyrenean and Iberian alpine spiny fescues (Festuca eskia complex, Poaceae). Botanical Journal of the Linnean Society 173: 676–706.
- 12. DeSalle, R., Girilet, G., Wheeler, W. (Ed.). 2002. Molecular systematics and evolution: theory and practice.

IV. ОЦЕНКА КАЧЕСТВА ОСВОЕНИЯ ПРОГРАММЫ МОДУЛЯ (формы аттестации, оценочные и методические материалы)

Зачет в форме тестирования по теме лекций.

Темы для дискуссии:

- 1. Геном и популяционная изменчивость растений.
- 2. Возможности молекулярно-генетических методов для выяснения родственных отношений между видами, определение гибридов, филогенетические вопросы.
 - 3. Молекулярно-генетические методы в биогеографии.

УЧЕБНАЯ ПРОГРАММА

модуля (курса)

«Практическая часть»

І. АННОТАЦИЯ

Автор программы:

Пилар Каталан, доктор наук, профессор кафедры ботаники Биологического института ТГУ.

Курс может рассматриваться как самостоятельная учебная дисциплина и, вместе с тем, как один из модулей программы повышения квалификации «Эволюция и популяционная генетика растений».

ІІ. СОДЕРЖАНИЕ

Тема 1. Сборка генома. Фильтрация прочтений хлоропласта (качество phred, тримминг (чистка), фильтрация по размеру, проверка качества). Исправление погрешностей. Отбор одиночных (SE) и парных (PE) прочтений. Картирование парных прочтений. Сборка контигов и скаффолдинг. Заполнение гэпов. Проверка сборки. Картирование прочтений на референсный геном. Картирование нового генома на прочтения (4 ч.).

Trimmomatic. Musket. Pplit-pairs. BWA. Velvet, Sspace, Gapfiller, Sequel. Mafft. Seeviewer. IGV.

- Тема 2. Анализ модели нуклеотидных замен с помощью jModelTest. Филогенетическая реконструкция, используя Paup*, MrBayes и RAxML (2 ч.).
- Tema 3. Популяционно-генетический анализ с помощью GenPop, AFLPdat, AFLPsurv, Arlequin, NTSYS, Structure, TCS (2 ч.).
- Tema 4. Анализ филогенетического датирования с помощью BEAST (Байесовский метод). Молекулярно-биогеографический анализ с помощью Lagrange (метод DEC) (2 ч.).

ІІІ. УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ МОДУЛЯ

(организационно-педагогические)

1.1. Материально-технические условия реализации программы:

Для проведения занятий по программе повышения квалификации «Эволюция и популяционная генетика растений» используются лекционная аудитория, оснащённая доступом к сети Интернет, презентационным оборудованием, а также компьютерный класс, рассчитанный на 26 рабочих мест, оснащенный компьютерами, доступом к сети Интернет, презентационным оборудованием (проектор, интерактивная доска, экран, ноутбук, документ-камера, интерактивный планшет, маркерная доска).

1.2. Учебно-методическое и информационное обеспечение программы:

Методические рекомендации и пособия по изучению курса.

При изучении данного модуля рекомендуется использовать интерактивное оборудование для демонстрации иллюстративных видеорядов и основного текста тезисов, а также программы обработки данных для проведения практических работ.

Содержание комплекта учебно-методических материалов.

В процессе обучения слушателям предоставляются кейсы с раздаточными материалами об основных положениях данного модуля. Для лучшего усвоения материала процесс обучения сопровождается наглядными таблицами, схемами, примерами из практики.

Литература

- 1. Abdo, Z., Minin, V.N., Joyce P., Sullivan, J. 2005. Accounting for uncertainty in the tree topology has little effect on the decision-theoretic approach to model selection in phylogeny estimation. Molecular Biology and Evolution 22:691–703.
- 2. Leblois, R., Estoup, A. & Rousset, F. 2003. Influence of mutational and sampling factors on the estimation of demographic parameters in a "continuous" population under isolation by distance. Mol. Biol. Evol. 20: 491–502.
- 3. Rousset, F. 2007. Inferences from spatial population genetics. In: Handbook of statistical genetics (D. J. Balding, M. Bishop & C. Cannings, eds.), pp. 945–979. Wiley, Chichester, U.K., 3rd edn.
 - 4. Weir, B. S. 1996. Genetic Data Analysis II. Sinauer, Sunderland, Mass.
 - 5. Nei, M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York, NY.
- 6. Boyce, M.S. 1992. Population viability analysis. Annual Review of Ecology and Systematics 23:481–506.
- 7. Ellstrand, N.C., Elam, D.R. 1993. Population genetic consequences of small population size: implications for plant conservation. Annual Review of Ecology and Systematics 24:217–242.
- 8. Falk, D.A., Holsinger, K.E. 1991. Genetics and conservation of rare plants. Oxford University Press, Oxford.
- 9. Pimentel, M., Sahuquillo, E., Torrecilla, Z., Popp, M., Catalán, P., Brochmann C. 2013. Hybridizations and long-distance colonizations at different time scales: towards resolution of long-term controversies in the sweet vernal grasses (Anthoxanthum). Annals of Botany 112: 1015–1030.
- 10. Minaya, M, Pimentel, M, Mason-Gamer, R, Catalán, P. 2013. Distribution and evolutionary dynamics of Stowaway Miniature Inverted repeat Transposable Elements (MITEs) in grasses. Molecular Phylogenetics and Evolution 68: 106–118.
- 11. Torrecilla, P., Acedo, C., Marques, I., Diaz-Pérez AJ, López-Rodríguez, J.A., Mirones, V., Sus, A., Llamas, F., Alonso, A., Pérez-Collazos, E., Viruel, J., Sahuquillo, E., Sancho, M.C., Komac, B., Manso, J.A., Segarra-Moragues, J.G., Draper, D., Villar, L., Catalán, P. 2013. Morphometric and molecular variation in concert: taxonomy and genetics of the reticulate Pyrenean and Iberian alpine spiny fescues (Festuca eskia complex, Poaceae). Botanical Journal of the Linnean Society 173: 676–706.
- 12. DeSalle, R., Girilet, G., Wheeler, W. (Ed.). 2002. Molecular systematics and evolution: theory and practice.